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Abstract—The trend in modern high performance computing
is to decompose a large linear algebraic problem into many small
problems that can be solved independently. Although there are
many studies to obtain near-peak performance for large-scale
dense matrix operations, it is not sufficient for batch operations
with small matrices. The study of small GEMM kernel optimiza-
tion and load balanced scheduling of batch operations on ARM
processors is not enough. In this paper, we present LBBGEMM,
a load-balanced batch GEMM framework for optimizing large
groups of variable-size small GEMM to boost near-optimal
performance based on ARMv8 architecture. The LBBGEMM
is divided into the install-time stage and the run-time stage.
At the install-time stage, we analyze the characteristics of
each transposition mode to design the high-performance small
GEMM kernel without data packing. This strategy greatly
reduces the memory access overhead. In addition, we optimize
instruction scheduling and instruction selection carefully to
achieve optimal performance. The run-time stage provides a
comprehensive auto-tuning process for batch GEMM by using a
tiling designer and a pre-grouped dynamic scheduling algorithm.
The tiling designer generates high-performance execution plans
for each group of matrices with different sizes. Then we divide
the large group of GEMM operations into small task groups.
These task groups are assigned to threads for execution in
the form of command queues through our proposed dynamic
mapping between threads and tasks. This pre-grouped multi-
thread task scheduling algorithm greatly improves the speedup
of multi-thread. The experiments show that LBBGEMM could
achieve significant performance improvements in batch GEMM
compared with other mainstream BLAS libraries.

Index Terms—GEMM, Batch GEMM, Small matrices

I. INTRODUCTION

Recently the mainstream basic linear algebra libraries

(BLAS) have delivered near-peak high performance on large-

scale General Matrix Multiplication (GEMM). However,

many modern applications are based on solutions with a

large number of small matrix operations, such as metabolic

networks [1], PDE-based simulation [2], tensor shrinkage for

finite element simulation [3], and image [4] processing. A

typical example might be to perform

αiAiBi + βiCi = Ci, i = 0 → L (1)

where L is large, but Ai, Bi, and Ci are small matrices.

The community has proposed Batch GEMM as an important

extension to the traditional BLAS library [5]. In addition to

‡Corresponding authors.

the traditional matrix parameters of the GEMM interface,

Batch size is added to indicate the number of matrices of the

same size in each matrix group, and batch count indicates the

number of matrix groups. It is difficult to deliver extremely

high performance on modern processors when using tradi-

tional methods to compute these problems. Therefore, it is

important to design batch GEMM optimization methods on

state-of-the-art hardware platforms.

Mainstream BLAS libraries such as Arm Performance

Libraries (ARMPL) [6], Intel oneAPI Math Kernel Library

(Intel MKL) [7], and BLIS [8] have added support for

Batch GEMM routines. However, there are still opportunities

to achieve more extreme performance for batch GEMM

based on the ARMv8 architecture. First, high performance

on a single small GEMM is the basis for multi-core par-

allel optimization of batch GEMMs. Small GEMM kernels

with consistently high performance at all possible sizes are

insufficiently researched on the ARM architecture. Second,

different groups contain different size of matrices, which

makes load-balanced task scheduling necessary to exploiting

the multi-core performance of modern processors. Through

experiments, we believe that batch GEMM on the ARM

platform still has optimization opportunities for multi-thread

acceleration.

This paper presents LBBGEMM, a high-performance batch

GEMM framework on ARMv8 CPUs, to meet the needs of

new applications on batch GEMM. It contains the install-time

stage and the run-time stage. The install-time stage generates

a series of high-performance computing kernels for small

GEMM. We design computing kernels for each transposition

mode without data packing to reduce the expensive memory

access overhead. In addition, we optimize the kernel for each

possible boundary case to minimize the boundary processing

overhead. The run-time stage chooses the optimal kernels and

tiling strategy, combined with the load-balanced multi-thread

scheduling strategy, to generate a high-performance batch

GEMM executing plan. Firstly, Our proposed tiling designer

generates the execution plan for each matrix group accord-

ing to input matrix properties (Matrix Size, Transposition).

Secondly, we divide the large group of GEMM operations

into smaller task groups for thread calls. Then the multi-

thread optimizer assigns tasks to threads through a dynamic

mapping of threads and tasks that we proposed. With the pre-
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Fig. 1. Overview of Load-balanced Batch GEMM Framework.

grouping of task group generators, this scheduling method can

obtain load balancing with less thread scheduling overhead.

Finally, the LBBGEMM links the above strategies into a

multi-thread execution plan for high-performance processing

of batch GEMM on ARMv8 architecture.

We apply these proposed batch GEMM optimization meth-

ods to the Kunpeng 920 CPU [9] based on the ARMv8

architecture. Regarding single-core performance, LBBGEMM

can provide up to 2.3× speedup compared to the ARMPL

batch GEMM interface and achieve up to 2.4× speedup

compared with the BLIS batch GEMM interface. These

demonstrate that the small GEMM kernel design optimization

method proposed in this paper is highly competitive. In terms

of multi-core performance, LBBGEMM shows a superior

speedup ratio than ARMPL and BLIS for all thread modes.

Specifically, In the 48-thread test, LBBGEMM can obtain up

to 4.2× performance improvement compared with ARMPL.

Moreover, we can achieve 4.1× speedup compared to the

BLIS. These show that our proposed group-based load balanc-

ing dynamic scheduling algorithm is extremely competitive

for batch GEMM.

The key contributions of this paper are summarized as

follows:

• We propose an auto-tuning algorithm for small GEMM

to obtain the optimal performance for any possible input

matrix property.

• We present a load-balanced multi-thread task scheduling

strategy for batch GEMM to improve multi-core perfor-

mance dramatically.

• We apply our design methods to a high-performance

library (LBBGEMM) for batch GEMM based on the

ARMv8 architecture.

The rest of the paper is organized as follows. Section 2

presents the related work. Section 3 describes the overview

of the LBBGEMM. Section 4 elaborates on the design of the

install-time stage. Section 5 describes the design and imple-

mentation details of the run-time stage. Section 6 presents

the performance evaluation of our methods. Finally, Section

7 concludes this paper with future work.

II. RELATED WORK

A. General Matrix Multiply

In the past decades, the community has put great efforts

into designing and implementing efficient BLAS libraries,

mainly to obtain the ultimate high performance in large-

scale computations [8], [10]. In dealing with dense matrix

operations, the approach proposed by GOTO [11] has been

widely adopted by mainstream linear algebra libraries such

as Intel MKL, OpenBLAS [12], and ARMPL. The traditional

implementation and optimization method of GEMM has three

main steps: tiling, packing, and calculation. First, the matrix

is divided into small blocks based on hardware features

such as TLB and cache size. The tiling algorithm reduces

the expensive memory access overhead by taking advantage

of the multi-level cache architecture of modern computer

architectures. Secondly, the matrix blocks are packed to

make the memory continuously accessible to the computing

kernels. Finally, the high-performance assembly kernels with

careful instruction scheduling will perform the computation.

However, this approach cannot utilize the full performance

of the processor for small GEMM. The reasons for this are

described in the next subsection.

B. Small GEMM

Small matrices pose a challenge for HPC systems because

modern processors are often designed to handle large-scale

data. It is difficult to take full advantage of multi-level

cache structures. In extreme cases, small GEMM may not

fully use vector registers, which limits the effectiveness of

modern SIMD architectures. In addition, the data packing

overhead and boundary processing costs cannot be neglected

in small GEMM. These small GEMM characteristics prevent

conventional approaches from achieving optimal performance

on small GEMM. Designing a library without data packing

steps and boundary processing is necessary to achieve high

performance for small GEMM. LibShalom [13] proposes to

overlap the packing and computation of GEMM, which is

implemented by handwritten assembly code and distributes

the overall GEMM load rationally to each computing kernel
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of the processor. LIBXSMM [14] uses the Just-in-time (JIT)

code compilation technique to generate assembly code for

small GEMMs. LIBXSMM uses code caching to reuse com-

pilation results to reduce the JIT overhead. IAAT [15] removes

packing operations by automatically generating hundreds of

differently sized kernels during the install-time stage. The

input-aware tiling algorithm is used in the run-time stage to

play the role of auto-tuning. These approaches give us great

inspiration. However, we still need to consider how to load-

balance the scheduling of these small GEMM kernels on batch

GEMM.

C. Batch GEMM

An efficient way to handle large numbers of small matrices

is to utilize batch operations. For fixed sizes, the compact

interface of the Intel MKL [16] uses a SIMD-friendly data

layout that fully uses SIMD registers. IATF [17] proposes

automatic tuning algorithms and code generation models for

ARM architectures based on SIMD-friendly data layouts.

For variable size, the community has proposed a standard

interface for Batch BLAS [5]. Intel MKL, ARMPL, BLIS, and

other mainstream linear algebra libraries support this inter-

face. The main optimization of batch GEMM focus on multi-

thread load balancing. There has been research comparing the

performance of OpenMP on batch processing problems with

different strategies. The results show that the group-based

approach is an effective way to handle variable batch GEMM

[18]. In addition, there is also a large amount of GPU-based

batch GEMM optimization research in the community [19],

[20], which provides ideas for the work in this paper.

Based on past work by the community, we believe that effi-

cient batch GEMM requires high-performance small GEMM

kernels and a load-balanced task scheduling method.

III. OVERVIEW OF THE LBBGEMM

This paper proposes a load-balanced batch GEMM frame-

work. As shown in Figure 1, it is divided into the install-

time stage and the run-time stage to achieve near-optimal

performance for batch GEMM. Our implementation provides

C/C++ APIs for applications, and the computing kernels use

ARM assembly for ultimate high performance. In terms of

interface, we refer to the mainstream batch GEMM, sup-

porting four modes N, T, R, and C, where T and N stand

for transposed and non-transposed matrices, and R and C

stand for conjugate transposed and conjugate non-transposed

matrices. For example, GEMM in TN mode indicates that

matrix A is transposed (T), but matrix B is not (N). For the

data types, we support S, D, C, and Z for single precision

floating point numbers, double precision floating point num-

bers, single precision complex numbers, and double precision

complex numbers, respectively. In the batch interface, we

refer to the latest standard. As shown in Algorithm 1, the

matrices within each group have the same properties. The

batch size indicates the number of matrices in each matrix

group of the same size, and the batch count indicates the

number of matrices groups.

Algorithm 1: Simplified batch GEMM

Input: A:M array ×K array;

B:K array ×N array;

C:M array ×N array;

Alpha array,Beta array;
group count:Number of groups;

group size:Number of each group;

Output: C+ = A×B
1 p = 0;
2 for i = 0 → group count− 1 do

3 α = Alpha array[i]
4 β = Beta array[i]
5 for j = 0 → group size[i]− 1 do

6 small gemm(A[p], B[p], C[p], α, β);
7 p = p+ 1;

The install-time stage generates highly-optimized com-

puting kernels for the run-time stage to call. It contains the

following components:

• Computing Kernel Designer designs the NN, NT, TN,

and TT mode kernel sets without data packing. In

addition, it designed kernels for every possible boundary

case for each mode.

• Kernel Optimizer optimizes kernels from the computing

kernel designer to achieve extreme performance.

The run-time stage chooses the optimal kernels according

to input matrix properties. It applies tiling methods combined

with the load-balanced multi-thread schedule method to gen-

erate the optimal execution plan for high-performance batch

GEMM. It contains the following components:

• Tiling Designer divides the matrix into blocks with a

minimum number of boundary processing blocks ac-

cording to the input properties to generate the high-

performance small GEMM execution plan.

• Task Group Generator divides the large group of

GEMMs into small task groups for threads to compute.

• Load-balanced Multi-thread Optimizer dynamically

assigns task groups to threads for execution through our

proposed dynamic mapping of threads and tasks.

IV. THE DESIGN OF INSTALL-TIME STAGE

The install-time stage generates small GEMM kernel sets

without data-packing for each mode to obtain optimal high-

performance. We point out that the high-performance small

GEMM execution strategy is the key to getting the ultimate

performance on batch GEMM. In our previous work [15], we

introduced the design and optimization method of the small

GEMM kernel in detail. This paper briefly summarizes the

key design ideas. In this paper, we default the matrix to be

stored in column-major.

A. Computing Kernel Designer

The computing kernel designer designs high-performance

assembly kernels for small GEMM without data packing.
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TABLE I
ALL GENERATED KERNELS

NN/TT/TN TN

SGEMM Batch 8× {8, 4, 3, 2, 1} 4× {4, 3, 2, 1}
4× {8, 4, 3, 2, 1} 3× {4, 3, 2, 1}
3× {8, 7, .., 1} 2× {4, 3, 2, 1}
2× {8, 7, .., 1} 1× {4, 3, 2, 1}
1× {8, 7, .., 1}

DGEMM Batch 8× {4, 3, 2, 1} 4× {4, 3, 2, 1}
4× {4, 3, 2, 1} 3× {4, 3, 2, 1}
3× {4, 3, 2, 1} 2× {4, 3, 2, 1}
2× {4, 3, 2, 1} 1× {4, 3, 2, 1}
1× {4, 3, 2, 1}

CGEMM Batch 8× {4, 3, 2, 1} 4× {4, 3, 2, 1}
4× {4, 3, 2, 1} 3× {4, 3, 2, 1}
3× {4, 3, 2, 1} 2× {4, 3, 2, 1}
2× {4, 3, 2, 1} 1× {4, 3, 2, 1}
1× {4, 3, 2, 1}

ZGEMM Batch 4× {4, 3, 2, 1} 4× {4, 3, 2, 1}
3× {4, 3, 2, 1} 3× {4, 3, 2, 1}
2× {4, 3, 2, 1} 2× {4, 3, 2, 1}
1× {4, 3, 2, 1} 1× {4, 3, 2, 1}

Although the mainstream BLAS libraries use the data packing

strategy that allows the computing kernel to access matrices A

and B consecutively, the data packing overhead is expensive

when the matrix size is small [13], [15]. It is necessary to con-

sider an efficient way to eliminate the impact of data packing.

We design computing kernels without data packing by careful

data loading analysis to get consistent high performance for

each mode. We carefully analyzed the characteristics of the

GEMM calculations in each mode to maximize the compute-

to-memory-access ratio (CMAR) [21], which is important

to effectively hide memory access latency for computational

instructions in the micro-kernel. In addition, As shown in

Table I, we design and optimize all possible kernel sizes for

each transposition mode. These kernel sets are automatically

selected at the run-time stage based on input parameters for

the optimal execution Plan.

B. Kernel Optimizer

We have proposed a series of optimization methods to

obtain the ultimate high performance in small GEMM. Our

main design idea is to avoid pipeline bubbles.

An efficient way to avoid pipeline bubbles is to use the

”ping-pong” operation, which divides the computation into

two phases, M1 and M2. In phase M1, the rows required

for matrices Bc and Ac in phase M2 are prefetched into the

registers. Moreover, in phase M2, the rows required for matri-

ces Bc and Ac in phase M1 are prefetched into the registers.

This method provides enough space for the load instruction.

In addition, within the M1 and M2 stages, we place the Load

instruction between the compute instructions and minimize

the correlation between the two compute instructions to avoid

pipeline blocking.

Appropriate data prefetching operations can significantly

improve performance. Since this paper uses the no data-

packing strategy, the matrix A, B, and C are still in memory

Fig. 2. Overview of multi-thread scheduling.

when the kernel loads the data. In addition, the batch GEMM

studied in this paper makes each thread compute several

consecutive small GEMMs. Therefore, data prefetching is

necessary. We use the ARM assembly PRFM instruction at

the beginning of the computing kernel for data prefetching to

minimize memory access latency.

V. THE DESIGN OF RUN-TIME STAGE

The run-time stage presents a comprehensive auto-tuning

process for batch GEMM that provides consistently high

performance for every mode and size of matrices, as shown

in Algorithm 2 and Figure 2. The tiling designer generates

optimal execution strategies for small GEMM. The task

group generator and load-balanced multi-thread optimizer

dynamically allocate task groups for the ultimate multi-thread

speedup ratio.

A. Tiling Designer

Appropriate tiling methods can greatly improve the ef-

ficiency of the calculation. As shown in Figure 3(a), The

traditional edge processing kernel is often not fully utilized

to the vector registers due to the small scale of the blocks. In

addition, particularly small blocks make it difficult to hide
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(a) Traditional tiling method (b) Small GEMM tiling method

Fig. 3. Tiling method of 15× 15 SGEMM.

memory access latency by using computation instructions.

Therefore, we design a new tiling algorithm to reduce the

generation of particularly small blocks. In addition to the

main kernel, we have designed and optimized all possible

boundary cases to avoid particularly small-sized blocks. As

shown in Figure 3(b), we have greatly reduced the number of

boundary blocks compared to Figure 3(a) and also avoid the

generation of particularly small scales such as 1 × 1, 1 × 2,

and 2 × 2. This greatly improves the performance of small

GEMM processing.

For batch GEMM, although the transpose patterns of the

matrices in each group are different, the patterns within the

groups are the same. Therefore our tiling designer only needs

to design once in each group to reduce the overhead.

B. Task Group Generator

The task group generator divides each matrix group into

several smaller task groups, which would be assigned to

threads. As shown in Figure 2, the tiling designer generates

the optimal computing strategy based on matrix properties.

These strategies ensure that the ultimate performance can be

obtained without data packing. This option is run only once in

each matrix group to reduce the overhead. However, directly

assigning these groups to threads can cause severe load

imbalance. This is because the size and number of matrices

are different between the groups. This makes the amount of

computation differ significantly between the groups. On the

other hand, assigning individual matrices to threads incurs a

huge thread scheduling overhead. When the matrix size is

particularly small, and the number of threads is large, the

execution time of a single thread is short, which can result

in multiple threads waiting for task assignment. Based on

the above analysis, we point out that the optimal grouping

needs to make the computation of each task group match the

hardware specifications.

∑
(mi × ki +mi × ni + ni × ki) ≤ L1 cache (2)

As shown in Equation 2, we present an upper limit on the

matrix contained in each task group, and this limit is based

on the matrix size and the L1 cache size. As shown in Figure

2, we store the small GEMM groups that do not exceed this

limit as a task group in the form of a command queue. This

allows threads to execute these commands directly without

calling the small GEMM interface.

C. Load-balanced Multi-thread Optimizer

We dynamically assign task groups to threads to obtain the

ultimate multi-thread speed-up ratio. The pre-grouping strat-

egy results in little difference in the amount of computation

between the task groups. However, we should note that larger

matrices can achieve higher processor performance, while

particularly small GEMMs can achieve only about 10% of the

peak processor performance [15]. Thus, even with the same

amount of computation, the task group with larger matrices

will run significantly less time than the matrix group with

smaller matrices. This produces a potential load imbalance

problem. In this paper, we design a dynamic mapping of

threads and tasks to improve multi-thread execution efficiency.

This dynamic scheduling algorithm further allows for load

balancing compared to static scheduling. The kernel selection

and tiling design will be allocated in command queues, reduc-

ing the resource allocation overhead of individual threads. As

shown in Figure 2, it illustrates a simplified task assignment

process. The number of matrices assigned to each thread is

determined based on the size of each group of matrices. We

indicate the current number of remaining tasks by setting the

global variable N. When a thread finishes its current task, it

will determine if there are any remaining executable tasks.

When N > 0, a new group of tasks is obtained from the

command queue. This process is atomic. LBBGEMM can

achieve optimal multi-thread acceleration with the dynamic

scheduling method based on the pre-grouping of tasks .

D. Implementation Of The Run-time Stage

Algorithm 2 shows a pseudo-code implementation of the

above optimization. First, it selects the tiling strategy and

computation kernels based on the input matrix properties. This

selection needs to be performed only once per matrices group,

as shown in lines 3-8. These kernels ensure that the ultimate

performance can be obtained without data packing. Second,

we compute the most appropriate number of matrices for the

current task group, as shown in line 9. Third, it divides the

large set of matrices into several smaller task groups for the

multi-thread optimizer to allocate and schedule, as shown in

lines 10-14. These task groups are in the form of command

queues, as shown in line 13. Our implementation ensures that

the final computation strategy is the best choice for command

arrangement at that matrix properties. Finally, a load-balanced

multi-thread optimizer dynamically assigns these task groups

to each thread to ensure maximum load balancing, as shown

in lines 15-28. We initialize the mutex lock, as shown in line

15. Lines 18-27 are multi-thread executions where each thread

will get the current state of the command queue by atomically

accessing the global variable T. If a thread is idle and the task

queue is not empty, it will execute a new task. These methods

allow us to compute batch GEMMs at high performance on

state-of-the-art hardware platforms.
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Algorithm 2: Auto-tuning and load-balanced of the

run-time stage

Input: A,B,C; /*array*/

M array,N array,K array;
transa array, transb array;

group count, group size;
Output: C

1 idx = 0, T = 0;
2 for P = 0 → group count− 1 do

3 tra = transa array[p];
4 trb = transb array[p];
5 m = m array[p];
6 n = n array[p];
7 k = k array[p];
8 kernel = tiling designer(tra, trb,m, n, k);
9 Ntask = L1 cache size/(m×n+n×k+k×m);

10 for i = 0 → group size[p]− 1; i+ = Ntask do

11 compute n = min(Ntask, group size[p]−i);
12 task group[T ] ← (kernel, compute n, idx);
13 T+ = 1; idx+ = compute n;

14 mutex.init();
15 total num = T ;
16 create threads(thread array, THREAD NUM);
17 /* Multi-thread execution */

18 while T > 0 do

19 mutex.lock();
20 T− = 1;
21 if T < 0 then

22 mutex.unlock();
23 break;

24 idx = total num− T − 1
25 mutex.unlock();
26 task group[idx].run();

27 join threads(thread array, THREAD NUM);

VI. PERFORMANCE EVALUATION

We evaluate the LBBGEMM proposed in this paper on the

Kunpeng 920 processor based on the ARMv8 architecture. We

compared LBBGEMM with two BLAS libraries optimized

for the ARMv8 architecture, of which BLIS is a widely

used open-source BLAS library in the industry. ARMPL is

the official performance library for ARM architecture. These

libraries support the multi-thread batch GEMM interface. The

evaluation includes four data types: single-precision, double-

precision, single-precision complex, and double-precision

complex. Each data type supports four transpositions: NN,

NT, TN, and TT.

For batch GEMM, we set group count = 4, group size

= {10000, 1000, 100, 100}, m = n = k = {10, 20, 30,

40}. We run each core 100 times and take the geometric

mean as the final result. Table II shows the key specifications

of the processor. The performance tests used in this paper

TABLE II
EXPERIMENTAL ENVIRONMENTS

Hardware CPU Kunpeng 920

Single-Core Peak perf. (FP64) 10.4GFLOPS
Single-Core Peak perf. (FP32) 41.6GFLOPS
Number of Cores 96
Arch. ARMv8.2
Freq. 2.6GHz
SIMD 128 bits
L1D cache 64KB
L2 cache 512KB

Software Compiler GCC7.5
ARMPL 22.0
BLIS 0.9.0

were compiled using the GCC7.5 compiler with the ”-O3 -

g” option. We initialize the matrix by filling it with random

floating point numbers (0 to 1) with reference to the generic

test scheme [22]. In the multi-thread test, we compare the

performance of LBBGEMM, ARMPL, and BLIS with 1, 4,

8, 16, 32, and 48 threads. In addition, the ratio of multi-

thread performance to single-threaded performance is used as

the multi-thread speedup ratio to compare the load balance of

these three libraries.

We take DGEMM as an example to analyze the multi-

thread performance and speedup ratio of LBBGEMM,

ARMPL, and BLIS under different threads in each transposi-

tion mode. The results show that LBBGEMM achieves a huge

performance advantage at all threads. Figure 5 demonstrates

our strong performance of the batch GEMM for double-

precision real numbers under the NN, NT, TN, and TT

modes. We compared the LBBGEMM with the ARMPL batch

GEMM (ARMPL batch) and BLIS batch GEMM. As shown

in Figure 5(a), in NN mode, LBBGEMM can provide 1.5×,

3.2×, 2.4×, 2.1×, 3.7× and 4.1× speedup in 1, 4, 8, 16,

32 and 48 threads, respectively, compared to ARMPL. And

providing 1.5×, 3.2×, 2.4×, 2.0×, 3.7× and 4.1× speedup

for the six thread modes, respectively, compared to BLIS.

Compared to the ARMPL, the LBBGEMM achieves 1.5×,

3.1×, 2.4×, 2.1×, 3.9×, and 4.5× speedups for the six thread

modes under NT mode. Moreover compared to the BLIS,

the LBBGEMM achieves 1.5×, 3.1×, 2.4×, 2.1×, 3.9×, and

4.5× speedups for the six thread modes under NT mode,

as shown in Figure 5(b). As shown in Figure 5(c), in TN

mode, LBBGEMM can provide 1.5×, 3.1×, 2.4×, 2.1×,

3.7× and 4.7× speedup for the six thread modes, respectively,

compared to ARMPL. And providing 1.5×, 3.4×, 2.5×,

2.1×, 4.7× and 4.4× speedup for the six thread modes,

respectively, compared to BLIS. Compared to the ARMPL,

the LBBGEMM achieves 1.3×, 3.0×, 2.4×, 2.0×, 3.8×, and

5.0× speedups for the six thread modes under TT mode. And

compared to the BLIS, the LBBGEMM achieves 1.3×, 3.1×,

2.3×, 2.0×, 4.0×, and 4.8× speedups respectively for the six

thread modes, under TT mode, as shown in Figure 5(d).

In terms of the multi-thread speedup ratio, the grouping-

based dynamic scheduling algorithm proposed by LB-
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(a) SGEMM with NN mode
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(b) SGEMM with NT mode
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(c) SGEMM with TN mode
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(d) SGEMM with TT mode

Fig. 4. Performance of the LBBGEMM batch GEMM compared with ARMPL and BLIS under the single-precision real number.
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(a) DGEMM with NN mode
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(b) DGEMM with NT mode
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(c) DGEMM with TN mode
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(d) DGEMM with TT mode

Fig. 5. Performance of the LBBGEMM batch GEMM compared with ARMPL and BLIS under the double-precision real number.
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(a) CGEMM with NN mode
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(b) CGEMM with NT mode
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(c) CGEMM with TN mode
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(d) CGEMM with TT mode

Fig. 6. Performance of the LBBGEMM batch GEMM compared with ARMPL and BLIS under the single-precision complex number.
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(a) ZGEMM with NN mode
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(b) ZGEMM with NT mode
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(c) ZGEMM with TN mode
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(d) ZGEMM with TT mode

Fig. 7. Performance of the LBBGEMM batch GEMM compared with ARMPL and BLIS under the double-precision complex number.
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BGEMM outperforms ARMPL and BLIS substantially in

each thread. For the NN, NT, TN, and TT, LBBGEMM can

provide 14.1×, 14.3×, 15.3×, and 18.2× speedups, respec-

tively, under 48 threads. As comparisons, ARMPL achieves

5.2×, 4.8×, 5.0×, and 5.0× speedups, respectively, under 48

threads for the four modes, and BLIS achieves 5.2×, 4.8×,

5.0×, and 5.0× speedups respectively under 48 threads for

the four modes.

As shown in Fig. 4, 6, and 7, the performance of SGEMM,

CGEMM, ZGEMM is similar to that of DGEMM batch, LB-

BGEMM all achieved a great advantage. The huge advantage

of LBBGEMM on a single core shows that this paper’s small

GEMM auto-tuning and kernel design algorithm is compet-

itive. The LBBGEMM still has a huge advantage on the

multi-core speedup ratio, which shows that the combination of

group design and dynamic scheduling in this paper is highly

effective in dealing with the batch GEMM problem.

VII. CONCLUSION

This paper presents LBBGEMM, a load-balanced batch

GEMM framework based on the ARMv8 CPUs. We divide it

into the install-time stage and the run-time stage. The install-

time stage focus on the optimization of small GEMM. We

designed no-packing strategies and optimized all possible

boundary kernels. At the run-time stage, we implement a

comprehensive auto-tuning process for batch GEMM by using

the tiling designer. We divide the large matrix group into task

groups, stored as command queues and dynamically assigned

to threads through our proposed dynamic mapping between

threads and tasks. The experimental results show that the

small GEMM kernel designed in this paper is highly compet-

itive. In terms of multi-thread speed-up ratios, LBBGEMM

demonstrates significantly improved performance compared

to the performance of ARMPL and BLIS.

In the future, we will focus on optimizing other BLAS

routines for small-scale batch processing problems to get the

ultimate performance. In addition, we will investigate and

extend our approach to multi-core CPUs and GPUs.
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